This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Intra-Molecular Co-Ordination - A Route to Novel Organo Tellurium Compounds

William R. McWhinnie^a

^a Department of Chemical Engineering and Applied Chemistry, Aston University, Birmingham, U.K.

To cite this Article McWhinnie, William R.(1992) 'Intra-Molecular Co-Ordination - A Route to Novel Organo Tellurium Compounds', Phosphorus, Sulfur, and Silicon and the Related Elements, 67: 1, 107 - 123

To link to this Article: DOI: 10.1080/10426509208045826 URL: http://dx.doi.org/10.1080/10426509208045826

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

INTRA-MOLECULAR CO-ORDINATION - A ROUTE TO NOVEL ORGANO TELLURIUM COMPOUNDS

WILLIAM R. McWHINNIE

Department of Chemical Engineering and Applied Chemistry, Aston University, Aston Triangle, Birmingham B4 7ET, U.K.

Abstract Molecules containing intra-molecular Te←N co-ordinate bonds are now a well established feature of organotellurium chemistry. Methods of synthesis of such compounds are reviewed and discussed. The considerable quantity of X-ray crystallographic data available for the materials is reviewed and the influence of the group bonded <u>trans</u> to the Te←N bond on the length of that bond is discussed for a series of tellurium(II) compounds. Some cross comparisons with related compounds of bismuth and selenium are made.

Recent studies of the Lewis basicity of some organotellurium compounds containing intra-molecular Te←N bonds reveal considerable lability of organic groups from co-ordinated tellurium. In some cases (e.g. Hg(II)) well defined products result, but in other cases (e.g. Pd(II)) ill defined materials of enriched inorganic content are obtained.

INTRODUCTION

This year (1991) the Royal Society of Chemistry (U.K.) celebrates the 150th anniversary of the formation in 1841 of The Chemical Society. It is interesting to note that the preparation of the first organotellurium compound, Et₂Te, by Wohler¹ in 1840 predates that foundation by one year. The past 151 years have seen periods of rapid growth and periods of relative stagnation in the development of the subject. In 1974 Irgolic² published a still useful book which summarised very fully progress to that time. It was very striking that the contributions to the subject were dominantly synthetic. Few rigorous physical studies of organotellurium compounds had been reported and the potential of some of the compounds as ligands in co-ordination chemistry had scarcely been realised. The paucity of compounds containing tellurium to nitrogen bonds was another noteworthy feature — indeed the folk-lore then current implied that these compounds should be "unstable". We are now wiser.

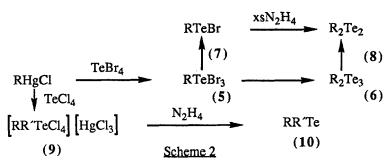
The author's interest in the area of organotellurium chemistry was generated by a review produced by Petragnani and Moura Campos³. It seemed that a number

of unanswered structural problems might be addressed by detailed spectroscopic examination and our early contributions were dominated by applications of vibrational spectroscopy^{4,5,6} and ¹²⁵Te Mössbauer spectroscopy^{7,8,9} to compounds the syntheses of which were often available in the literature. Soon a desire to synthesise new compounds grew too great to resist and it was decided to explore the Te←N coordinate bond.

Early efforts to prepare simple co-ordination compounds of, say, pyridine by reaction of RTeCl₃ (R = Ph or p-EtO.C₆H₄) with the base in supposedly dry solvents gave, <u>via</u> adventitious ingress of water, pyridinium salts¹⁰ i.e. (C₅H₅NH) [RTeCl₄].

Sadekov et al¹¹ reported a yellowish-green complex of N-benzylideneaniline and TeCl₄ from benzene solution which showed an increase in $\upsilon(C=N)$ compared with the free base. For the same reaction, in our hands, ¹² hydrolysis problems were again enhanced by the presence of the basic ligand and a yellow product LH[Te(O)Cl₃], (L = N-benzylideneaniline) with $\upsilon(C=N) = 1650 \, \mathrm{cm}^{-1}$ (cf L, $\upsilon(C=N) = 1630 \, \mathrm{cm}^{-1}$) was obtained. The classic work ¹³ in which organopalladium and platinum compounds were prepared by the direct reaction of PdCl₂ or PtCl₂ with azobenzene suggested that ortho-telluration of azobenzene may occur directly given the well established electrophilic behaviour of TeCl₄ ¹⁴. Refluxing TeCl₄ and azobenzene in a range of solvents gave no product, however no hydrolysis of the halide was noted.

INTRA-MOLECULAR TELLURIUM-NITROGEN CO-ORDINATE BONDS: SYNTHETIC CONSIDERATIONS


Mercuration of azobenzene followed by a trans-metallation reaction with TeCl₄ provided a satisfactory route to tellurated azobenzenes¹⁵ (Scheme 1).

$$\begin{array}{c|c}
 & N & Ph \\
\hline
 & HgCl & TeCl_4/N_2/6h & Cl_3Te \\
\hline
 & & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & &$$

Scheme 1

Compound (2) was the first compound containing a Te←N intra-molecular co-ordinate bond to be structurally characterised¹⁵. Subsequent attempts to synthesise (1)¹⁶ led to products of variable m.p. despite tolerable C, H, N analytical data, a problem caused by some degree of mercury contamination (N.B. relative molecular masses: TeCl₃ = 234.1, HgCl = 236.1). A definitive synthesis is now available¹⁶ and (1) has been crystallographically characterised; it appears that a polymorphous form of (2) also exists (m.p.s. 80°C, 125°C). ^{16,17} The range of compounds in scheme 1 may be extended by metathesis e.g. the chloro-group in (2) may be replaced by acetato-¹⁸, thiocyanato-¹⁸, or dialkyldithiocarbamato-¹⁹.

The mechanism of the <u>trans</u> metallation reaction is a matter of some interest, an associative route being one possibility. Phenylazophenyl (C', N) mercury(II) chloride is in fact dimeric²⁰ and another reagent, 2-(2-pyridyl)phenylmercury(II) chloride, of importance in our work has been shown by Constable²¹ to be tetrameric. Thus the speculation that molecular species involving both mercury and tellurium may be intermediates in the <u>trans</u>-metallation process is not unreasonable. Indeed, A1-Salim²² in his investigation of the 2-(2-pyridyl)phenyltellurium system did isolate a compound later proved to be [RR´TeCl][HgCl₃]²³ (R = 2-(2-pyridyl)phenyl-, R´ = p-ethoxyphenyl) which is denoted (9) in scheme 2.

(R = 2-(2-pyridyl)phenyl-; R' = p-ethoxyphenyl-).

The chemistries of selenium and tellurium are not always identical and there are subtle differences between the reactions of selenium and tellurium compounds with 2-(2-pyridyl)phenylmercury(II) chloride as a comparison between schemes 2 and 3 illustrates. Although selenium(IV) starting materials were employed the final products contain selenium(II) e.g. $[C_{11}H_8NSe]$ $[HgBr_3]^{24}$ (13). A comparison of (13) and (14) in scheme 3 is of interest since these are believed to be related as [RSe] $[HgBr_3]$ and [RHg] $[SeBr_3]$ (R=2-(2-pyridyl)phenyl-).

RHgSeBr₃
$$\frac{R'_2Se_2}{xsBr_2}$$
 RHg Cl $\frac{i) R'_2Se_2/Br_2}{ii) N_2H_4}$ RR'Se (11) ("R" environment B) $\frac{1}{Se}$ Br₄/dioxane (12) (two "R" environments: A & B) EtOH RSeBr₃ $\frac{N_2H_4}{(15)}$ (13) Scheme 3

(R = 2-(2-pyridyl)phenyl-; R' = p-ethoxyphenyl-).

Compound (12), scheme 3, has the stoicheiometry RSeHgBr₃.0.5 dioxane but has two distinct "R" environments (N.M.R.) denoted A and B. These environments correspond to the single environment (A) of (13) and (B) of (14). There is then circumstantial evidence in schemes 2 and 3 for an associative mechanism for the trans-metallation reaction.

<u>Trans</u>-metallation using organomercury derivatives has been successful for the synthesis of a range of tellurated azomethines and phenylhydrazones e.g. (16) and (17)²⁵:

MeO Ph
$$\uparrow TeBr_3$$
NO2
$$\uparrow TeBr_3$$
NH
$$\uparrow N = CH - OMe$$
(16)
$$\uparrow OMe$$
(17)

Piette and Renson^{26,27} were among the first to use intra-molecular co-ordination to stabilise organotellurenyl halides <u>via</u> $Te \leftarrow O$ co-ordinate bonds. They developed organolithium methodology such as:

Treatment of (18) with a variety of reagents, followed by removal of the protecting groups gives a wide range of compounds (19).

e.g.
$$X = Cl$$
, Br, I, CH_3 , Buⁿ

Te

(19) X

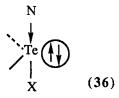
The ability of (19) to form Schiff bases enabled this methodology to be adapted to the synthesis of compounds with $Te \leftarrow N$ bonds²⁸ as illustrated in scheme 4.

Direct lithiation of aromatic amines can lead to species with $Te \leftarrow N(sp^3)$ as opposed to $Te \leftarrow N(sp^2)$ bonds as the work of Singh demonstrates²⁹ in scheme 5. Similar syntheses have led to the isolation and X-ray characterisation of a chiral tellurium compound (31)³⁰.

The school led by Sadekov and Minkin has recently made considerable contributions to the chemistry of tellurated azomethines. The synthetic methodology follows that outlined above and a number of structural determinations are available (see later). The following reaction³¹ is of interest, the product being related to (13) in scheme 3:

The ready formation of this stable cationic species suggests that it might play some role as an intermediate when Te-R' bonds are broken by halogenating reagents:³²

Similar cationic intermediates may be involved for the transformation $(22)\rightarrow(23)$ in scheme 4.


Other variations reported by the Russian workers include a novel telluronium salt (33), the telluride (34),³⁴ and the formation of intra-molecular co-ordinate bonds <u>via</u> the anionic group (X) in R_2TeX_2 e.g. (35)³⁵.

The cation of (33) is a further example of a structually characterised chiral tellurium compound.

STRUCTURAL CONSIDERATIONS

The molecular structures of organotellurium compounds containing intra-molecular $Te \leftarrow N$ bonds are unremarkable as such. Thus, in general, members of the series $RTeX_3(X=Cl_Br)$ are square based pyramidal with the vacant co-ordination position trans to the Te-C bond notionally occupied by a spare pair of electrons conferring pseudo-octahedral geometry. Inter-molecular contacts are rare (see data in table I). The Te $\leftarrow N$ distances are relatively constant for those of the three compounds in table I (table entries 1, 14, 15 — average Te-N = 2.416 Å), but that for No.16 at 2.244 Å is significantly less. All values are greater than the sum of the Pauling⁴² covalent radii (2.11 Å), but very much less than the van der Waals distances⁴² (3.70 Å).

Other Te(IV) compounds (table entries 6 and 17) are novel telluronium salts. The structures of both may be considered pseudo - trigonal bipyramidal (36) with X=Me (No. 6) and Cl (No.17).

For No.6 the Te \leftarrow N interaction is very weak (2.750 Å), within the van der Waals distance but much greater than the sum of the covalent radii. The Te-C distance of the trans methyl-group of 2.137 Å is quite normal and the Me-Te-N angle is 164.9°C. With the more electronegative chlorine in 17 the Te-N distance is 2.31 Å. It has been suggested⁴³ that tellurium is best regarded as ellipsoidal when in pseudo-trigonal bipyramidal co-ordination and estimates of $r_{equatorial}$ (1.37 Å) and r_{axial} (1.54 Å) for Te(IV) have been made⁴³. Thus the calculated Te-N length is 2.28 Å, quite close to that observed. The observed (2.43 Å) and calculated (2.53 Å) Te-Cl distances differ to a greater extent. It appears that the strength of the Te \rightarrow N interaction is a function of the electronegativity of the group trans- to N.

TABLE I Bond length data for Te←N compounds

Compounds		Ref.	Bond Lengths (Å)		
			Te←N	Te-C	Other
Azobenzene Series R = Te(IV) 1) RTeCl ₃	(1)	16	2.417(4)	2.114(5)	-
Te(II) 2) RTeCl	(2)	15	2.23(2) 2.19(2)	2.04(2)	TeCl 3.66, 3.67
3) RTeS ₂ CNMe ₂		19	2.340(7)	2.101(8)	Te5 2.568(2), 3,225(3)
4) RTeOOCCH ₃		18	2.260(4)	2.074(4)	TeO 2.167(4), 2.953(4)

S Dr.CON		10	0.040(0)	0.000745	
5) RTeSCN		18	2.243(3)	2.073(4)	Te—S 2.672(1) TeN (inter- mol) 3.535(3)
Azomethine Series		33	2.750(4)	(Me)2.137(6)	0.000(0)
Te(IV)	1			(Bu)2.147(5)	
6)	(33)			(Ar)2.120(5)	
7)	(35)	36	2.962 2.923	(Me) 2.10	Te—O 2.13, 2.10
Te(II)					,
18)	1				
N p-tol	ì	1			
	- 1	22	2 212(5)	0.100(0)	
Te	1	32	2.218(6)	2.107(7)	1
l Ĝ	1		2.239(6)	2.088(7)	
9)	(20)	40	2.773	(Bu)2.181(10)	
17)	(20)	-10	2.239(6)	(Ar)2.111(8)	
10)		40	2.786	(Bu)2.161(12)	
HgCl ₂ .L	1		2.752	2.146(12)	
rigCi2.L				(Ar)2.101(12)	
				2.149(11)	
11)	(34)	34	2.702(3)	2.128(4)	1
	j		İ	(Chelate)]
1	1		j	2.162(4)	
12)			l	(free-trans N)	
12)	1				
	į	38	2.72	2.13	
Te +			1	(Chelate)	
Te D2	1			2.16	
Ň				(trans N)	
Pr ⁱ			1		
Te(I)		28	2.822(5)	2.136(8)	
13)	(26)		2.876(5)	2.142(8)	
Benzylamine Series					
Te(IV)					
14)		29	2.42(1)	2 12(1)	
NMe		29	2.42(1)	2.12(1)	
TeBr ₃	,				1
10013			1		
15)					1
1					
NH ₂		30	2.411(7)		
Taci					
TeCl ₃		L	<u> </u>	<u> </u>	

Phenylpyridine Series $R' = \bigcap_{N} R' = p-EtO.C_6H_4$					
$\frac{\text{Te}(\text{IV})}{16) \text{ RTeBr}_3} \tag{5}$	22	2.244(14)	2.110(19)	TeBr 3.596(3)	
17) RR"TeCl,HgCl ₃ (9)	23	2.31(2)	(R) 2.11(3)		
Te(II) 18) RTeBr (7)	41	2.236(11)	2.111(6)	Six independent molecules in asymmetric unit.	
19) RR"Te (10)	22	2.695(4)	(R) 2.138(6) (R")2.144(6) (trans-N)		
20) RTeS ₂ CNMe ₂	22	2.354(4)	2.111(5)	Te-S (trans N) 2.518 TeS (non-bonding)	
21) R'TeS ₂ CNMe ₂	38	2.365(4) 2.385(4)	2.124(5) 2.135(4)	3.667(1) Te-S (<u>trans</u> N) 2.569(1), 2.543(1)TeS (intra-mol)	
22) R ₂ Te ₃ (6)	37	2.554(7)		3.222(1), 3.230(1) Te-Te	
23) RR"Se (11)	39		1.932(4)	2.776(1)	

(N.B. where inequivalent molecules are present in the asymmetric unit, data are given for each molecule)

For Te(II) compounds of the type RTeX (X = Cl, Br, dithiocarbamate) there is more evidence of inter- or extra intra-molecular contracts. Thus, the <u>psuedo-trigonal</u> bipyramidal "T" shaped molecules may make a fourth long contact along a vector bisecting the angle between the equatorial lone pairs of electrons. Judgement of how real such interactions are is complicated by the various estimates of the van der Waals radius of tellurium which are available — 2.20 Å (Pauling⁴²), 2.06 Å (Bondi ⁴⁴), 1.9 Å (Briegleb⁴⁵). It may reasonably be stated that the tendency to weak secondary interactions <u>trans</u> to the Te-C bond is greater for RTeX than for RTeX₃.

The Te \leftarrow N bond length for organotellurenyl halides in table I is remarkably constant with an average value of 2.223 Å which compares with a predicted value of 2.28 Å (r_{axial} , Te(II) = 1.54 Å⁴³). The change of the <u>trans</u>-ligand from halogen to oxygen (table I, No.4) gives Te \leftarrow N = 2.260 Å, and to sulphur (SCN, table I, No.5), 2.243 Å. Change of the <u>trans</u>-ligand to dithiocarbamate (table I, Nos. 3, 20,

21) increases the Te←N bond length by approximately 0.14 Å (average of 3, 20, 21 = 2.361 Å). The dithiocarbamates are prone to show a second long Te---S interaction within the van der Waals distance, usually in the molecular plane of the "T" skeleton (Nos., 3, 21); for No.21 however the dithiocarbamate is twisted out of the molecular plane and an essentially non-bonding distance of 3.667 Å between Te and the second sulphur atom results. Given the great chemical similarity of 20 and 21, the structures must be determined as much by crystal forces as by the strength or weakness of any Te---S secondary interaction. PhTe(S2CNEt2)346 has a seven co-ordinate tellurium An attempt was made to prepare tris-dimethyldithiocarbamato-(phenylazophenyl [C', N])tellurium(IV)¹⁹ to investigate if Te would opt for 8-coordination or, if 7 - co-ordinate, would the nitrogen - or one dithiocarbamate sulphur - atom remain unco-ordinated? In the event, although compounds of the formula $(C_{12}H_9N_2)Te(dmdtc)_3$ were isolated (dmdtc = dimethyldithiocarbamate), ¹²⁵Te Mössbauer spectroscopic evidence suggested them to be charge transfer complexes: RTe^{II}(dmdtc).(dmdtc)₂.¹⁹ The desired composition was eventually achieved with 2-(2-pyridyl)phenylbismuth compounds which were not susceptible to reductive elimination reactions. Thus Ph Bi (dedtc)2 is dimeric (6 co-ordinate via long secondary Bi---S contacts) but (C₁₁H₈N)Bi(dedtc)₂ is a six co-ordinate monomer in which a weak Bi←N interaction is preferred to an inter molecular Bi---S contact⁴⁷ (dedtc = diethyldithiocarbamate), thus demonstrating some affinity of "soft" metal centres for the 2-pyridyl-nitrogen atoms.

Four compounds of Te(II) in table I are of the type RR'Te (nos. 9, 11, 12, 19). All show much longer (weaker) Te←N contacts than those in RTeX (e.g. 2.695 - 2.773 Å, cf van der Waals distance of 3.70 Å). Thus a trans-bonded carbon atom exercises a much larger trans-influence on the Te←N bond than halogen, oxygen, or sulphur. However, there is also evidence of reciprocal lengthening of the Te-C bond trans to nitrogen. This is best illustrated by compound No.11 (34) (where R = R' in RR'Te) for which Te-C ("equatorial") = 2.128(14) Å and Te-C ("axial", trans-N) = 2.162(14) Å, For No.9 also the Te-C distances are 2.111(8) Å (aryl) and 2.181(10) Å (butyl); although some 0.03 Å may be accounted for by the change from sp² C to sp³ C, the lengthening of the Te-C bond trans to N seems real. A comparison of compound No. 23, table I with No.19 is interesting. In the selenium compound, the plane of the 2-pyridyl-group is twisted away from the C-Se-C plane

and no bonding Se---N interaction can be considered. By contrast, in No.19, the weak Te←N interaction maintains the tellurated 2-phenylpyridine moiety in an almost planer configuration.

Compound No.13, table I, a ditelluride has tellurium in a formal oxidation state of (I) and the Te←N distances, although within the sum of the van der Waals radii, are very long (2.822 (5) and 2.876 (5) Å). By contrast, the tritelluride No.22 in table I has the relatively short Te←N distance of 2.554(7) Å. This observation has led to the suggestion that the compound may be regarded as bis[2-(2-pyridyl)phenyltellurenyl] telluride²². To the extent that it is valid to use the Te←N bond length as a measure of the Lewis acid strength of tellurium in those compounds, we have in summary:

$$RTeX > RTeX_3 > (RTe)_2Te > RTe(R') > RTe-TeR$$
. (Cl,Br=X)

THE LEWIS BASICITY OF Te←N COMPOUNDS

One reason for the synthesis of many of the compounds of the type RR Te was to investigate their ligand chemistry with a range of metal ions. Some data obtained from such experiments are reviewed briefly.

Mercury(II) has a good affinity for tellurium ligands. The complex of $HgCl_2$ and compound (22) is of 1:1 stoicheiometry. The $Te \leftarrow N$ contacts remain intact in the co-ordinated ligand (compound No.10, table I),⁴⁰ thus the ligand is bidentate <u>via</u> the two tellurium atoms and the chelate ring formally consists of 13 atoms. By contrast, compound No.19 in table I (10 in scheme 2), also of the type RR´Te, undergoes a totally different reaction, albeit <u>via</u> a 1:1 complex intermediate:

The process has been termed <u>reverse trans-metallation.</u>⁴⁸ The product has a unit cell comprising 4 discrete molecules of RTeCl and discrete molecules of R'HgCl; no significant short inter-molecular contacts occur and the compound may be termed an

inclusion compound⁴¹. Surprisingly, the ligand RR Te for which R' = p-methoxyphenyl gives the 1:1 complex and fails to react further.

In contrast to the clean reactions of mercury(II) chloride with 10 and 22, the co-ordination chemistry with ions such as Pd(II), Pt(II), Rh(I) and Cu(I) is more complex. Compound 22 forms stoicheiometric complexes with Pd(II) e.g. PdCl₂ (22).H₂O, no evidence for Pd←N co-ordinate bonds was found and it is believed that the ligand is bidentate via two tellurium atoms. Spectroscopic evidence suggested that "face to face" dimeric structures with bridging rather than chelating organotellurium ligands must be considered⁵⁰. With Pt(II), more complex behaviour was observed. Thus, whilst it is possible to isolate an initial complex, PtCl₂ (22).H₂O, more prolonged reaction leads to loss of the n-butyl-groups from (22) and the isolation of PtCl₂ (37).2H₂O. Solution N.M.R. studies (125Te, 195Pt) support the view that the butyl-group is labile and also that the final product contains Pt(IV), but no more specific mechanistic information was forthcoming⁴⁹. Rhodium(I) complexes were mainly of interest in that [RhCl (22)] provided rare evidence for the involvement of an azomethine nitrogen atom in co-ordination to the metal⁵⁰.

The migration of alkyl-(methyl-) groups from tellurium co-ordinated to palladium has recently been observed by others⁵⁰ when considering Pd(II) complexes of 38. Further investigations of ligands such as 10 has established that aryl groups may also become very labile in the presence of ions such as Pd(II), Pt(II) and Cu(I). If 10 is denoted RR Te where R = 2-(2-pyridyl)phenyl- and R = p-ethoxyphenyl- then products such as R Te PdCl, RPdCl, R2R TePt2Cl₅ are identified together with other phases containing progressively more inorganic material e.g. "R 7 R4 Cl₉ Pt₉ Te₉". Unfortunately, the great lability of both R and R results in materials which are extremely difficult to characterise, but the readinese with which the complexes decompose to give products of high metal/tellurium content is an observation of potential interest⁵¹. With Cu(I), some better defined materials arise on reaction of halide salts with 10 e.g. CuCl(10)⁵², but in this case also evidence of organic-group lability is noted. It may be that species analogous to

13 (scheme 3) have a mechanistic role to play e.g. using a metal halide "MCl₂" for illustrative purposes:

$$MCl_2(RR'Te)$$
 $MCl_2 + RR'Te$
 R'
 R'
 $RTe - MCl_2$ $RTeMCl + R'Cl$
 $RTe^+MR'Cl_2$ $RTeCl + R'MCl$

The design of volatile organotellurium ligands with organic groups which labilise on complex formation could have application in the new technologies, such as, MOCVD being developed for the growth of thin films of telluride semi-conductors on a variety of substrates.

REFERENCES

- F. Wohler, Ann, 35, 111 (1840). 1.
- K.J. Irgolic, The Organic Chemistry of Tellurium (Gordon and Breach, 2. New York, 1974).
- N. Petragnani and M. de Moura Campos, Organometal, Chem. Rev., 2, 61 3. (1967).
- W.R. McWhinnie and M.G. Patel, J. Chem. Soc., Dalton Trans., 199 4. (1972).
- W.R. McWhinnie and P. Thavornyutikarn, J. Chem. Soc., Dalton Trans., 5. 551 (1972).
- N.S. Dance and W.R. McWhinnie, J.Chem. Soc., Dalton Trans., 43 (1972). 6.
- C.H.W. Jones, R. Schultz, W.R. McWhinnie, and N.S. Dance, Can. J. 7. Chem., 54, 3234 (1976).
- C.H.W. Jones, W.R. McWhinnie, and F.J. Berry, Mössbauer Effect 8. Methodology, 10, 227 (1976).
- I. Davis, W.R. McWhinnie, N.S. Dance, and C.H.W. Jones, Inorg. Chim. 9. Acta., 29, L203 (1978).
- 10. P. Thavornyutikarn and W.R. McWhinnie, J. Organometal. Chem., 50, 135 (1973).
- V.G. Tkalsnko, A.P. Amarskaya, Yu.V. Kolodyazhniy, I.D. Sadekov, and 11. V.I. Minkin, Zh. Obshch. Khim., 43, 1943 (1973).
- A. Brown and W.R.McWhinnie, unpublished observations. 12.
- A.C. Cope and R.W.Siekman, <u>J. Am. Chem. Soc.</u>, <u>87</u>, 3272 (1965). G.T. Morgan and R.E. Kellett, <u>J. Chem. Soc.</u>, 1080 (1926). 13.
- 14.
- R.E. Cobbledick, F.W.B Einstein, W.R. McWhinnie, and F.H. Musa, 15. J. Chem. Research (S), 145 (1979); (M), 1901 (1979).
- 16. M.A.K. Ahmed, W.R. McWhinnie and T.A. Hamor, J. Organometal. <u>Chem., 281</u> 205 (1985).
- 17. W.H.H. Günther, personal communication.

- 18. M.A.K. Ahmed, W.R. McWhinnie, and T.A. Hamor, J.Organometal. Chem., 293, 219 (1985).
- 19. M.A.K. Ahmed, A.E. McCarthy, W.R. McWhinnie, and F.J. Berry, J. Chem. Soc., Dalton Trans., 771 (1986).
- 20. M. Ali, W.R.McWhinnie, and T.A. Hamor, J. Organometal. Chem., 371, C37 (1989).
- 21. E.C. Constable, T.A. Leese, and D.A. Tocher, J. Chem. Soc. Chem.Commun., 570 (1988).
- 22. N.I. Al-Salim A.A. West W. R. McWhinnie, and T.A. Hamor, J. Chem.
- Soc., Dalton Trans., 2363 (1988).
 T.S. Lobana, S.A. Mbogo, W.R. McWhinnie, W.C. Patalinghug, and A.H. White, J. Organometal. Chem., 390, 29 (1990). 23.
- 24. S.A. Mbogo, M.R. Greaves, T.S. Lobana, W.R. McWhinnie, and T.A. Hamor, J. Organometal. Chem., 395, 167 (1990).
- 25. H.B. Singh, and W.R.McWhinnie, J. Chem. Soc., Dalton Trans., 821 (1985).
- 26. J.L. Piette, and M. Renson, Bull. Soc. Chim. Belg., 80, 669 (1971).
- J.L. Piette, R. Lysy, and M. Renson, 3559 (1972). 27.
- 28. K.Y. Abid, N.I. Al-Salim, M.R. Greaves, W.R. McWhinnie, A.A. West and T.A. Hamor, J. Chem. Soc., Dalton Trans., 1697 (1989).
- H.B. Singh, N. Sudha, A.A. West, and T.A. Hamor, J. Chem. Soc., Dalton 29. Trans., 907 (1990).
- 30. H.B. Singh, personal communication.
- I.D. Sadekov, A.A. Maksimenko, A.G. Maslakov, and V.I. Minkin, 31.
- J. Organometal. Chem., 391, 179 (1990).

 A.A. Maksimenko, I.D. Sadekov, A.G. Maslakov, G.K. Mehrotra, O.E. Kompan, Yu.T. Struchkov, S.V. Lindeman, and V.I. Minkin, 32. Metallorg, Khim., 1, 1151 (1988).
- 33. I.D. Sadekov, A.A. Maksimenko, O.E. Kompan, A.G. Maslakov, Yu.T. Struchkov, and V.I. Minkin, Metallorg. Khim., 2, 1260 (1989).
- 34. I.D. Sadekov, A.A. Maksimenko, A.G. Maslakov, G.K. Mehrotra, G.S. Borodkin, O.E. Kompan, Yu.T. Struchkov, M.A. Fedotov, and V.I. Minkin, Metallorg. Khim. 2, 298 (1989).
- I.D. Sadekov, A.A. Maksimenko, G.K. Mehrotra, V.I. Minkin, Zhur. Or v. 35. Khim., 23, 657 (1987).
- V.I. Minkin, A.A. Maksimenko, G.K. Mehrotra, A.H. Maslakov, O.E. Kompan, I.D. Sadekov, Yu.T. Struchkov and D.S. Yufit, 36. J. Organometal. Chem., 348, 63 (1988).
- T.A. Hamor, N.I. Al-Salim, A.A. West, and W.R.McWhinnie, J. 37. Organometal. Chem., 310, C5 (1986).
- 38. A.A. West, W.R. McWhinnie, and T.A. Hamor, J. Organometal. Chem., <u>356,</u> 159 (1988).
- S.A. Mbogo, W.R. McWhinnie, T.S. Lobana, E.R.T. Tiekink, J. Organometal. Chem., 388, 273 (1990).

 N.I. Al-Salim, W.R. McWhinnie, and T.A. Hamor, J. Chem. Soc., Chem. 39.
- 40. Commun. 453 (1986).
- M.R. Greaves, T.A. Hamor, B.J. Howlin, T.S. Lobana, S.A. Mbogo, 41. W.R. McWhinnie, and D.S. Povey, J. Organometal. Chem., submitted for publication.
- 42. L. Pauling, The Nature of the Chemical Bond, 3rd edn., Cornell University Press, Ithaca, New York (1960).

Downloaded At: 14:53 29 January 2011

- 43. W.R. McWhinnie, and Z. Monsef-Mirzai, in <u>Proceedings of the Fourth International Conference on the Organic Chemistry of Selenium and Tellurium</u>, eds. F.J. Berry, and W.R. McWhinnie, The University of Aston in Birmingham, (1983).
- 44. A. Bondi, J. Phys. Chem., <u>68</u>, 441 (1964).
- 45. G. Briegleb, in E. Müller, Methoden der Organischen Chemie., Houben-Weyl 4th Edn., III(i), 545, Thieme Stuttgart (1955).
- 46. S. Esperås and S. Husebye, Acta Chem. Scand., 26, 3293 (1972).
- 47. M. Ali, W.R. McWhinnie, A.A. West, and T.A. Hamor, J. Chem. Soc. Dalton Trans., 899 (1990).
- 48. S.A. Mbogo, W.R. McWhinnie, and T.S. Lobana, <u>J. Organometal, Chem.</u>, 384, 115 (1990).
- 49. N.I. Al-Salim, and W.R. McWhinnie, Polyhedron, 8, 2769 (1989).
- 50. T. Kemmitt, W. Levason, M.D. Spier, and M. Webster, <u>Organometallics. 9</u>, 1181 (1990).
- 51. S.A. Mbogo, W.R. McWhinnie, and T.S. Lobana, Unpublished observations.
- 52. S.A. Mbogo, W.R. McWhinnie, and T.S. Lobana, <u>Inorg. Chim. Acta.</u>, <u>172</u>, 221 (1990).